Question: What two scientists help discover evidence to explain how the	T
planet looks today.	
Continental Drift and Sea-floor Spreading	
Alfred Wegener (1910) hypothesized that at one time all the	
continents were once joined together in a single landmass, he named	
Pangea, and have since drifted apart - now known as continental	
drift.	
Wegener gathered the following evidence to support his hypothesis:	
 Evidence from land features such as mountain ranges lining 	
up on continents when pieced together	
 Evidence from fossils, or traces of ancient organisms pre- 	
served in rock, show the same animals and plants occurred on	
the now separated land masses	
 Evidence from climate change where Wegener showed 	
scratches on rocks make from glaciers in places with much	
more mild climates today	
Wegener could not provide a satisfactory explanation for the push	
or pull of the continents, therefore his hypothesis was rejected	
until Harry Hess (1960) proposed a radical idea suggesting a process	
of sea-floor spreading.	
Sea-floor spreading - sea floor spreads apart along both sides of a	
mid-ocean ridge as new crust is added. Ocean floors move like a	
conveyor belt, carrying continents along with them.	
Evidence of Hess's theory of sea-floor spreading included:	
 Evidence from molten material which looked like pillow-shaped 	
rocks formed if molten material erupts and hardens quickly	
 Evidence from magnetic stripes - rocks that lie in a pattern 	
showing a record of reversals of Earth's magnetic field	
 Evidence from drilling samples reveal that the farther from 	
a ridge the rocks were taken, the older they were	
Eventually the ocean floor sinks into deep, underwater canyons	
called deep-ocean trenches where subduction takes place which	
allows part of the ocean floor to sink back into the mantle, over	
tens of millions of years.	